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GRC Physical Sensor Instrumentation  

Research Progress 

• R&D 100 Awards in 
1991, 1995, and 1998 

• NASA Group 
Achievement Award 
2003 

• NASA Tech Briefs Create 
the Future Design 
Contest Award 2008  

• 2013 Sensors Expo  
Applications Award  

• Partnerships in Sensor 
Development: 

2003 NASA Group Achievement Award 

SiC High Temperature Drag Force 

Transducer as part of the Integrated 

Instrumentation & Testing Systems project 

1998 R&D 100 Award  

Long-lived Convoluted Thermocouples 

For Ceramic Temperature Measurements 

2008 NASA Tech Briefs Create the Future 

Design Contest - Machinery & Equipment 

Flexible Small Area Heat Flux Sensor 

developed for Goodyear Tire & Rubber Co. 

1991 R&D 100 Award 

PdCr wire strain gauge applied on 

Ford Motor Co. exhaust manifold 
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Flow sensor made of high 

temperature materials 
  Multifunctional smart sensors being developed      

Thin Film Physical Sensors for  

High Temperature Applications 

Heat Flux Sensor Array 

to T=1000°C  

 Advantages for temperature, strain, heat flux,  flow & pressure measurement: 

  Negligible mass & minimally intrusive (microns thick)  

  Applicable to a variety of materials including ceramics 

  Minimal structural disturbance (minimal machining) 

  Intimate sensor to substrate contact & accurate placement 

  High durability compared to exposed wire sensors   

  Capable for operation to very high temperatures (>1000°C) 

PdCr strain sensor  

to T=1000°C 

Pt- Pt/Rh temperature 

 sensor to T=1200°C 

Multifunctional 

Sensor Array 
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Physical Sensors Facilities 

Sensing Film layers are 

fabricated with physical vapor 

deposition methods (sputter 

deposition, e-beam vapor 

deposition) 

Sensors are patterned by 

photolithography methods 

and/or stenciled masks 

Evaluation of thin films with in-house 

Materials Characterization Facilities 

Testing of films with in-house high-

temperature furnaces & burn rigs 

SEM/EDAX Thin Film Characterization Lab ERB Burn Rig 

Sputtering PVD Systems   Microfabrication Clean Room 
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Thermocouple Probe 

• VIPR (Vehicle Integrated Propulsion Research) 

– On-going ground-based engine test venture (since 2011) 

– Utilizes a Pratt & Whitney F117 turbofan engine  

– Maturing Engine Health Management (EHM) technologies   

• VIPR2 (2013) Objective O13.0 — acquire data from a   

 thin-film thermocouple probe installed in the engine 

– Establish a core capability for implementing thin-film  

 sensor probes in harsh environments.  

– Allows new information for gas-path models  

– Demonstrate the viability of thin-film sensor probes   

 in an engine environment 

• A sensor probe was designed for installation in a borescope port 

in the high-pressure compressor section of the test engine. 

– Easy implementation 

– Gold versus platinum (Au-Pt) thermocouple selected based on 

material stability and GRC experience in Stirling convertors to 960°C  

 
7/30/2014 Glenn Research Center 6 



National Aeronautics and Space Administration 

www.nasa.gov  

Thermocouple Probe Design 

• Compression Fitting welded to a 

Borescope Plug 

– Sensor probe tip flush with internal 

wall of the bleed air passage 

• Sensor Body Stainless Steel 316 

bored out for thermocouple lead wires 

– Lead wires 0.076 mm dia. of Au, Pt in 

alumina tubes cemented in place 

– Embedded Type K  thermocouple 

– Thin films of Au and Pt deposited on 

sensor body tip, lead wires bonded to 

films 

– Protective crown on tip to prevent 

cement from dislodging into engine 

• Transition Plate held in place with a 

Sensor Cover held the connectors for 

the lead wires 
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Thermocouple Probe Fabrication 

• Sensor probe components designed, 

fabricated and assembled at NASA GRC 
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Fabrication Diagram showing wires and potting cement 

Machined Sensor Probe Body 

Au-Pt Films on Probe 

Tip with Crown 

Sputter-Depositing 

Films 
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Thermocouple Data Acquisition Unit 

• Data Acquisition unit designed to operate with extended temperature 

range of –40°C to +125°C due to proximity of the jet engine 

– Digitizes the sensor data as close to the sensor as possible and send data 

packets to a separate receiver unit over a RS-485 bus,  
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• Digitizer built around automotive-
grade thermocouple to digital 
conversion chips 

– 48 MHz clock, 14-bit conversion 
of temperature readings 

– Temperature calculated using 
NIST polynomials for Type K, Au-
Pt thermocouples 

– Includes cold-junction 
compensation 

• Receiver unit placed in a cooler 
area by the PC recording the data 
via RS-232 so uses standard 
commercial temperature parts 
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Verification Tests 

• Sensor Probe underwent a Qualifying 

Test Protocol as prescribed by VIPR 

requirements 

• Qualifying Conditions: 

– Survivability after 20g shock 

– Operation at 5357 kPa (777 Psia) 

– Operation at 633°C 

• Bench test operational unit in 150°C 

Box Furnace 

– Verified operation 

– Thin Film Au-Pt thermocouple 

indicated a faster response than 

embedded Type K probe 
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Qualification Model on Vibration Plate 

Qualification Model after Qualifying Tests 
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VIPR2+ Green Run Validation 

• Operational unit installed 

in F117 compressor 

borescope port for engine 

validation test 

• Grounding issues with 

sensor during VIPR2 run 

at NASA AFRC moved 

test to the VIPR2+ Green 

Run at P&W test cell 
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VIPR2+ Green Run Data 

• Data logging on PC, 8 samples per second (no smoothing) 

• Recorded two Probe TC as well as their cold junction temperatures 
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Multiwire Analysis 

• Time constant (τ) convenient to describe reaction of thermocouple 

temperature change (dT/dt or Ṫ) to change in temperature of the gas/fluid 

environment (Tg): 

dT/dt = (1/τ)·{Tg(t)-T(t)}  

– “Time constant” dependent on heat transfer to gas and thermal properties of 

thermocouple 

• Gas Temperature can be calculated by temperature (T), time derivative 

(Ṫ) and time constants (τ) for multiple thermocouples at same location: 

Tg(t) = T1(t) + τ1·Ṫ1 

Tg(t) = T2(t) + τ2·Ṫ2 

T1(t) – T2(t) + τ1·Ṫ1 – τ2·Ṫ2 = 0 

• Minimize RMS(ΔTg(t)) for fitting τ1, τ2 

• Results:  

– Embedded Type K Thermocouple (τ1) = 26.2 s 

– Au-Pt Thin Film Thermocouple (τ2) = 2.40 s 
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Numerical Analysis 
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• Determine temperature with time 

based on the rate of heating : 

∂T/∂t = α · ∂2T/∂x2 

• At each node (j) of a modeled layer, 

calculate T at each time step (n): 

Tj,n = (-αMΔt/Δx2) Tj-1,n+1   

 + (1+2·αMΔt/Δx2) Tj,n+1  

  – (αMΔt/Δx2) Tj+1,n+1  

• Model ran for different heat transfer 

coefficients 

– Thin Film Thermocouple at 1µm 

– Type K thermocouple at 8.76 mm 

– Total 76 mm of Stainless Steel 

• Reaction plotted for a 300°C step 

increase on the tip of the probe at 

300°C 

• Two very different curves! 

Thin Film Thermocouple 

Type K Thermocouple 
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Comparison of Time Constants 

• Complications? 

– Sensor probe tip geometry? 

– Turbulent flow of the bleed air?  

– “Time constant” requires more terms to fully characterize the response? 
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Heat 
Transfer 

Coefficient 
(W/m²K) 

τ1 (s) τ2 (s) τ2/τ1 

20 225. 815 0.277 

50 90.2 326 0.276 

100 45.1 164 0.276 

150 30.0 109 0.275 

250 18.1 66.0 0.274 

Green Run 
Data Fit 

2.40 26.2 0.0916 

• Compare numerical 

analysis cases using:  

τ = (dT/dt)-¹·{Tg(t)-T(t)} 

• t = 0.25 s 

• dt = 0.5s 

• Tg = 600°C 

• Very different results 

compared to data fit 
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Comparison to Derived Temperature 

• The Thin Film Thermocouple was seen to have a response time up 

to an order of magnitude faster than the embedded Type K 

thermocouple 

– A truer indicator of real gas temperature 

– How much better? 

 

 

 

• FFT to calculate the gas temperature in the frequency domain then 

convert back to time domain 

– Filter out >2.238 kHz 

– Assumes “time constant” relation is accurate 
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Comparison of Temperatures 

• Thin film thermocouple reading within 3.2°C of the gas temperature 

– Total uncertainty of the thin film thermocouple thus ±3.4°C 
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Conclusions 

• Experimental thin-film Au-Pt thermocouple sensor probe was 

designed, fabricated at GRC, and operated in a borescope port in 

the bleed air passage of a F117 turbofan engine 

– VIPR Objective  

– Embedded standard Type K thermocouple  

– Sensor probe was fabricated from high temperature materials 

• Sensor Probe and assembly subjected to strict qualification testing 

– Multi-axis vibrational testing  

– Elevated temperature pressure testing 

• Custom data acquisition unit to digitize the signals from the sensor 

probe for high accuracy and low noise measurements was designed 

and built at GRC.  

• Measured thin film thermocouple temperature estimated within 

3.4°C of gas temperature 

– Acquired data faster than expected from numerical models 
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